

Abstract
Advocates of application frameworks claim that this technology is one of the most promising, supporting
large-scale reuse, increased productivity and quality, and reduced cost of software development. A
number of its advocates suggest that the next decade will be a major challenge for the development and
deployment of this technology. This study investigates the theory and practice of application frameworks
technology to evaluate what works and what does not in systems development. The evaluation is based on
quality criteria developed by the authors. The result of the study suggests that application frameworks
technology does support large-scale reuse by incorporating other existing reuse techniques such as design
patterns, class libraries and components. It also shows that the methodological support pertaining to
building and implementing application frameworks is inadequate. Furthermore, it indicates that
application frameworks technology may increase the quality of software in terms of correctness and
reusability with some penalty factors but there is no guarantee of increasing the extendability and
interoperability of software systems. There are still obstacles that restrict the potential benefits claimed by
the proponents of application frameworks.

Keywords: application frameworks technology, systems development, evaluation

Introduction
Software development markets expect developers or development companies to deliver quality products
at an affordable price within a required time frame. Developers and management alike are looking for
technologies that can be used to increase the productivity and quality of software products. Mature
engineering disciplines such as automobile design, have proven that reuse is the best way to increase the
quality and productivity of products. However, despite the efforts of decades-long research the result of
software reuse is still limited to code or class reuse (also known as small-scale), and developers are still
‘reinventing the wheel’. Application framework is a technology anchored in this situation to promote
reuse in terms of not only the code or class but also the module and architecture (also known as large-
scale) of the reusable software artefacts to increase software productivity and quality. The notion of
application frameworks appeared at the end of the 1980s. MacApp is one of the first user interface
application framework designed specifically for implementing Macintosh applications in later 80s

(Fayad, 2000b). Application frameworks
has become a popular research topic during
the 1990s. Numerous frameworks have
been defined including domain independent
frameworks such as Java Swing, Microsoft
Foundation Class (MFC), graphical editors
such as HotDraw and domain specific
frameworks such as IBM’s San Francisco
framework.

Copyright © 2006 Victoria University. This document has
been published as part of the Journal of Business Systems,
Governance and Ethics in both online and print formats.
Educational and non-profit institutions are granted a non-
exclusive licence to utilise this document in whole or in
part for personal or classroom use without fee, provided
that correct attribution and citation are made and this
copyright statement is reproduced. Any other usage is
prohibited without the express permission of the

17

What Works and What Does Not:
An Analysis of Application Frameworks Technology

Wusheng Zhang
Victoria University, Australia

Mik Kim
RMIT University, Australia

The purpose of the study was to investigate the theory and practice of application frameworks
technology to evaluate this technology in relation to the quality of software developed from application
frameworks. In this paper the authors first discuss definitions and various classifications of application
frameworks. Next are discussed the theoretical foundations of application framework technology
including object technology and other reuse technologies that have an important role in the development
of application frameworks. Then, the quality criteria constructed by the authors will be introduced to
evaluate application frameworks more systematically. After that the results of the evaluation will be
illustrated.

What is an Application Framework?
The common sense of the word of framework appears to be “a skeleton of another structure”, which has
been well adopted into the context of modern information systems development. Booch, Rumbaugh and
Jacobson (1999) define a framework as “an architectural pattern that provides an extensible template
for an application within a domain”. In this context a framework is essentially a design skeleton that
allows systems developers to create part of a system in the first place, and add design details when
necessary. Johnson (1997) states that the definitions of frameworks vary, but the one used most is that
“a framework is a reusable design of all or part of a system that is represented by a set of abstract
classes and the way their instances interact”. Another common definition is “a framework is the skeleton
of an application that can be customized by an application developer”. The former concerns the
structure of a framework while the latter describes the purpose of the framework. Lewis (1995) argues
that a framework is more than a class hierarchy. Fayad (1997) claims that a framework is a reusable,
‘semi-complete’ application that can be specialised to produce custom applications. Zamir (1999)
defines “an object-oriented framework as the reusable design of a system or subsystem implemented
through a collection of concrete and abstract class and their collaborations. The concrete classes provide
the reusable components, while the design provides the context in which they are used.” The concepts of
frameworks and application frameworks are often used interchangeably in the context of systems
development.

Although the definitions by different researchers vary, some of them are more abstract and concerned
more with the analysis and design phase, while others are more interested in the design and development
phase. The different emphases does not conflict each other but rather enrich and enlighten further
research issues related to the field of application frameworks technology. An application framework
initially is a semi-completed application with architectural structure, which can be implemented and
customised by application developers to develop application software. Application frameworks design
can be bottom-up and pattern driven or top-down and target driven (Schmid 1995, Szyperski1997 and
Fayad 2000). The bottom-up design works well where an application framework domain is already well
understood. Starting from proven patterns and working one’s way up has the advantage of avoiding
idiosyncratic solutions in the small, problematic solutions that should be replaced by application of an
established pattern. A top-down and target driven approach is preferable where an application
framework domain has not yet been sufficiently explored but where the target domain to be served by
the framework is well understood.

Classifications of Application Frameworks
The application frameworks can be domain independent such as a graphical user interface (GUI)
framework, or domain dependent or specific such as a CIM framework. Here, the word domain refers to
business areas being applied for implementing the application frameworks. For example, if the
application frameworks are used in a domain from the financial sector the application frameworks are
domain specific to the financial application, or if the application frameworks are used in a domain of the
manufacturing sector the application frameworks are domain specific to the manufacturing application.
They can also be classified according to the scope, reuse perspective, the control aspect and the
development process of application frameworks. Figure 1 shows A summary of different classifications

Journal of Business Systems, Governance and Ethics Vol 1, No 3

18

used in current literature. It illustrates classifications from different perspectives. According to the
scope of application frameworks, Fayad (2000) proposes to classify this into three categories namely:
system infrastructure frameworks such as graphical user interface (GUI) and Microsoft Foundation
Class (MFC); Middleware integration frameworks such as BEST and JAWS; and Enterprise

application frameworks such as SEMATECH CIM, OSEEFA and PRM. He claims (1999a) that the
application frameworks are generally domain specific applications such as computer-integrated
manufacturing frameworks, distributed systems, networking and telecommunications, or multimedia
collaborative work environments.

From the perspective of reuse the application frameworks can be classified into whitebox, blackbox, and
greybox frameworks (Szyperski 1997, Fayad, 2000). A whitebox application framework is a framework
customised by subclassing existing framework classes and providing concrete implementations. To
implement a whitebox framework, application developers use more inheritance and polymorphism.
Application specific functionality is expressed by inheritance and new implementations. Implementation
inheritance tends to require knowledge of the superclasses’ implementations. In the last few years the
application frameworks researchers are more interested to develop blackbox application frameworks
which rely more on composition rather than inheritance. In the blackbox frameworks approach, the
extendability of the framework is achieved by defining an interface for components that can be plugged
into the framework using composition. Object composition is based on forwarding rather than
delegation, merely relying on the interfaces of the involved objects. In a blackbox framework (Fayad
2000), an application developer selects from the set of subclasses provided by the framework as the
blackbox components and binds it to the hot spot (plug in point). Thus, the developer may create an
application without programming, merely by selecting, configuring, and parameterising framework
components. A greybox approach is a combination of both the whitebox and the blackbox frameworks.

In view of taking control, the application frameworks can be classified as callable frameworks and
calling frameworks (Fayad 2000). A callable framework allows the application to retain the thread of
control and provides services when the application calls the frameworks. A calling framework provides
a control loop that calls application-provided code at appropriate times. From a development process
perspective the application frameworks can be divided into analysis frameworks, design frameworks,
and implementation frameworks. The analysis frameworks typically focus on analysis level constructs,
without making any commitment. They are typically the product of domain analysis. Most current
application frameworks are either a design framework or an implementation framework. Largely the
application frameworks are domain specific such as a financial application framework or a
manufacturing framework. An application framework domain is a set of rules and roles and their
semantic models codified in the framework itself. It provides a generic incomplete solution to a set of

From the perspective of Classifications
Domain Domain independent

Domain dependent or specific

Scope
Infrastructure frameworks
Middleware integration frameworks
Enterprise application frameworks

Reuse
Whitebox
Blackbox
Greybox

Control Callable framework
Calling framework

Development process
Analysis framework
Design framework
Implementation framework

Figure 1: The classification of frameworks

Journal of Business Systems, Governance and Ethics Vol 1, No 3

19

similar problems within an application domain. Fayad (2000) states that an application framework
embodies generalised expertise in the domain based on analysis and synthesis of a wide range of specific
solutions. He argues that analysis and synthesis of a wide range of specific solutions will help to
understand a design of the proposed application framework. It is shown that the research community
has more understanding in some domains such as financial, manufacturing, communication and
networks and social welfare than others (Eliens 2000, Fayad 2000).

Object Oriented Technology in Application Frameworks
The development of the application frameworks research is related to the development of object
technology although there is no evidence that the framework technology is exclusive to object
technology. However, the majority of the researchers in the area of application frameworks and most
current application frameworks are object-oriented. Object-oriented technology is one of the fastest
growing technologies of the last two decades promising better quality, productivity and interoperability
through software reuse. Coad and Yourdon (1990) define “an object is an abstraction of something in a
problem domain, reflecting the capabilities of the system to keep information about it, interact with it or
both”. In that sense objects are used to model an understanding of the application domain, which
concerns the system and abstraction. Deitel (2003) defines “Object technology is a packaging scheme
that facilitates the creation of meaningful software units”. He explains that these units are usually large
and focused on particular application areas and most of them can be reused (Deitel 2003). For example,
there are data objects, time objects, audio objects, video objects, file objects, record objects and so on.

Iterative and incremental development approaches adopted in object-oriented technology have been the
main development methodology supporting the development of application frameworks (Fayad, 1999a).
Although the research of application frameworks is not exclusive to the object-oriented community,
object-oriented technology has been the main driving force in the area of application frameworks.
Advocates of application frameworks claim that the technology is one of the most promising
technologies supporting large-scale reuse, increasing the productivity and quality, and reducing the cost
of software development. Fayad (2000b) suggests that the primary benefit of object-oriented application
frameworks stems from the modularity, reusability, extendability, and inversion of control they provide
to developers. Many researchers and academics (i.e., Lewis et al, 1995, Eliens 2000, Fayad & Johnson,
2000, Due 2002) have argued that a major challenge for the next decade will be to develop and deploy
application frameworks that operate in areas such as finance, medical care, insurance and
telecommunication and networking. On the contrary, one survey (Cockburn 1997) shows that object-
oriented approaches at frameworks development have failed more often than they have succeeded.

The central idea of object-oriented technology subsumes abstraction, modularity, encapsulation,
inheritance and polymorphism - concepts that, on the face of it, lend themselves to reuse. The notable
development of the technology consists of a comprehensive set of object-oriented modelling methods for
analysis, design, and implementation, designed to realise the concepts mentioned above. Object-oriented
technology has led to the development of patterns, components and application frameworks and object-
oriented concepts have been applied in the process of developing and implementing application
frameworks. Fayad (1999a, 1999b, 2000) stresses that frameworks build upon object-oriented concepts,
which provides a conceptual base for more complex programming constructs and reusable
implementation structures for large systems application. Eliens (2000) states that an object oriented
approach will pay off when we have arrived at stable abstractions from which we have good
implementations that may be reused for a variety of other applications. Accordingly, it can be said that
application frameworks is a technology aimed to achieve large-scale reuse by applying object-oriented
concepts. In the following sections some of the object-oriented concepts and principles will be discussed
in relation to application frameworks and systems development.

Abstraction
Abstraction is one of the principal concepts of object-oriented technology and aims to reduce details
required for implementing software systems. Microsoft Encarta Dictionary (2001) defines abstraction as

Journal of Business Systems, Governance and Ethics Vol 1, No 3

20

“to develop a line of thought from a concrete reality to a general principle or an intellectual idea; a
concept or term that does not refer to a concrete object but that denotes a quality, an emotion, or an
idea.” A closer working definition defined by Graham (2001) is that “representing the essential features
of something without including background or inessential detail.” It stresses separation of the essential
features and details. Abstraction is a powerful tool available to software developers and most of modern
object oriented languages support the notion. For example, in the Jade language, a pure object-oriented
development environment has an abstract class called object, which can be inherited by application
developers to add their own classes. An abstract class, such as the object class, denoted with no
instances, is often used to represent abstract concept, whose concrete subclass may add its structure and
behaviour by implementing its abstract method. Within an inheritance hierarchy, it is likely that some of
the topmost classes may contain features whose definitions are differed from the subclasses. In other
words, there are no implementation details for these features within the super class. This type of class is
subsequently known as an abstract class. Szyperski (1997) states that an abstract class is a class that
cannot be instantiated, that is, no object can be a direct instance of an abstract class. An abstract class
can have unimplemented methods/abstract methods. Concrete classes inheriting from an abstract class
have to implement all such abstract methods. An ideal abstraction should encapsulate all the essential
properties of an object, including data and processes. The main benefit of an abstraction is the design
expertise embodied in it, ready for reuse (Szyperski 1997). Application frameworks are designed for the
purpose of supporting large-scale reuse, therefore abstraction is a built-in notion in the application
frameworks development paradigm.

Generalisation and specialisation
Generalisation describes the logical relationship between elements that share some characteristics or say
it describes the grouping of objects that have a common set of properties and operations. Fowler (1997)
defines generalisation as a taxonomic relationship between a more general element and a more specific
element that is fully consistent with the general element and that adds additional information.
Specialisation is the refinement of an abstraction by adding additional features. Generalisation and
specialisation hierarchy is one of the most powerful tools of abstraction used in object-oriented
modelling, which allows representing taxonomic relationships among classes (Bruel, 2002). The
relationship between generalisation and specialisation allows us not only to classify objects, but also to
use the generalisation and specialisation hierarchy. An object oriented approach uses generalisation and
specialisation techniques to realise abstraction. An application framework is a skeleton of the structure
for a system, and the classes within the framework contain a common set of properties and operations
for the domain area described by the framework. It is a generic solution for a bushiness domain. An
application developed by implementing an application framework is a specialisation of the framework in
which the application developers specialise the classes in their intended applications by inheritance or
composition.

Modularity
Zamir (1999) defines a model as a distinctively named and addressable element of software used as a
building block for the physical structure of a system, and modularity as the characteristic of a system
decomposed into a collection of cohesive and loosely coupled modules, typically a goal of systems
analysis and design. Modularity has been the principle for many matured engineering disciplines. The
importance of modularity has been emphasised in many of the writings of software theoreticians. Meyer
(1988) and Graham (2001) state that a good model should have decomposability (- refers to the
software engineering and project management requirement where systems be decomposable into
manageable chunks so they can be changed more easily and so that individuals or teams can be assigned
to coherent work packages), composability (- refers to the property of modules to be freely combined
even in systems for which they were not developed), understandability (- helps people to comprehend a
system by looking at its parts prior to gaining an understanding of the whole), continuity (- in a system
implies both that small changes made to it will only result in small changes in its behaviour, and that
small changes in the specification will require changes to only a few modules) and protection (- the
criterion of modular protection insists that exception and error conditions either remain confined to the

Journal of Business Systems, Governance and Ethics Vol 1, No 3

21

module in which they occur or propagate to only a few other closely related modules). Fayad (1999a)
states that modularity is one of the main benefits that application frameworks can offer to application
developers. He argues that application frameworks enhance modularity by encapsulating volatile
implementation details behind stable interfaces. He (Fayad 2000) also suggests that extensive data
coupling in a whitebox framework may break sound modularity and therefore, encourage people moving
towards blackbox frameworks or greybox frameworks.

Encapsulation
This is one of the important concepts and the mechanisms to support the need for software reuse and
security. Zamir (1999) defines encapsulation as the mechanism by which related data and procedures
are bound together within an object. In effect, an object is a software capsule that functions as a
blackbox, responding to messages from other objects and dispatching messages of its own in ways that
do not reveal its internal structure. Encapsulation is the practice of hiding the data structure that
represents the internal state of an object from access by any other than the public methods of that object.
This can ensure that objects cannot change the internal state of other objects in unexpected ways,
minimising the complexity of putting together modules of code from different sources. This is a
programming facility used in object-oriented programming practice. Encapsulation is the technique for
packaging the information in such a way as to hide what should be hidden and make the visible what is
intended to be visible. The use of encapsulation is a powerful means of maintaining control over an
object’s data and state. It allows an object to determine whether and how data may be changed. This
makes it possible to modify or enhance an object’s implementation while keeping its exposed interfaces
consistent, preventing backward-compatibility problems as the programs develop. Encapsulation
promotes modularity, meaning that the object must be regarded as a building block of a complex
system. Once a proper modularisation has been achieved, the implementer of the object may postpone
any final decisions concerning the implementation at will. Application frameworks relies on the
capability of encapsulation, in which the framework can hide the internal structures but allows
application developers to use the functions defined via interfaces.

Polymorphism
Graham (2001) defines polymorphism as the ability to use the same expression to denote different
operations. Many modern programming languages support polymorphic behaviour. Sometimes
polymorphism is referred to as dynamic binding or runtime binding of function calls. Object-oriented
programming languages derive most their power from inheritance and runtime binding of function calls.
Application frameworks, especially whitebox frameworks, rely on polymorphism (dynamic binding) and
inheritance to allow application developers to implement the framework.

Most current application frameworks apply object-oriented concepts and principles. Many notable
projects in the application frameworks area are based on object-oriented technology such as San
Francisco, OSEFO and SEMATECH CIM. Schmid (1996) argues that the primary benefit of an object
oriented approach for application frameworks stems from the emphasis on modularity and extendability
by encapsulating volatile implementation details behind stable interface and enhancing software reuse.
Application frameworks is built upon the objects technology that is more likely to provide a conceptual
base for complex programming constructs and reusable implementation structures. Additionally, object
oriented technology provides the mechanisms needed for application frameworks such as inheritance,
encapsulation and polymorphism.

Other Reuse Techniques and Application Frameworks
Application frameworks is a reuse technology aimed at large-scale reuse and it has a close relationship
with other reuse techniques used in software engineering. An application framework can be seen as a
collection of components, a generic solution for a class of problems, a frame of mind for solving
problems and a set of architectural constraints. It integrates and concretises a number of patterns to a
degree required to ensure proper interleaving and interaction of participants involved. An application

Journal of Business Systems, Governance and Ethics Vol 1, No 3

22

framework can also be seen as a kind of library, which provides reusable objects for applications. But in
contrast to ordinary software class libraries, frameworks may at times take over control when the
application runs. From a reuse perspective the application frameworks technology is closely related to
other reuse techniques. Application frameworks use those reuse techniques to achieve the goal of large-
scale reuse. As the reuse techniques have an important role in developing frameworks technology,
understanding the specific technology is a stepping-stone for grounding evaluation criteria. Following,
the foundational techniques (i.e., architecture, class libraries, patterns, and components) are explained:

Architecture
Software architecture is the foundation of system construction. Graham (2001) points out that software
architecture deals with abstraction, with composition and decomposition, and also with style and
aesthetics. Bass (1998) describes the software architecture of a program or computing system as the
structure or structures of the systems, which comprise software components, the externally visible
properties of those components and the relationships among them. Szyperski (1997) depicts system
architecture as a means to capture an overall generic approach that makes it more likely that concrete
systems following the architecture will be understandable, maintainable, evolvable, and economic. It is
this integrating principle, covering technology and market that links software architecture to its great
role model and justifies its name. Despite the different concentration of the definitions, software
architecture is about an overview of a system. Generally speaking, software architecture can be seen as
a set of rules, guidelines, interfaces, and conventions used to define how components and applications
communicate and interoperate with each other. Recent software development experience has shown that
sound software architecture for the software systems is necessary as software systems are more
complex than before. Szyperski (1997) stresses that architecture prescribes proper frameworks for all
involved mechanisms, limiting the degree of freedom to curb variations and enable cooperation.
Architecture needs to be based on the principal considerations of overall functionality, performance,
reliability, and security. Software engineers have learnt from practice such that architecture is needed in
any system if they seek for guiding rules for design and implementation.

Architecture needs to create simultaneously the basis for independence and cooperation of systems.
Independence of the systems aspect is required to enable multiple sources of solution parts. Cooperation
between these otherwise independent aspects is essential in any no-trivial architecture. System
architecture is the structure of a software system which provides a platform for application developers
to build the system. It may be as concrete as providing detailed implementation requirements, to as
abstract as giving a generic idea of how the system should be implemented. Application frameworks
technology promises reuse of not only the frameworks source codes, but also more importantly,
architecture (Fayad 1999a). A standardisation structure allows a significant reduction of the size and
complexity of codes that application developers have to write.

Class libraries
These are a set of reusable classes, often defined as part of the implementation or design environment
(Zamir 1999). Many programming languages have some ready usable classes embedded and available
to application developers especially in visual development such as VB Studio.Net and J2EE. Class
libraries in general offer static inheritance facilities but frameworks are more likely to support dynamic,
run time binding facilities. Application frameworks defines ‘semi-complete’ applications that embody
domain specific object structures and functionality. It can be viewed as extensions to object oriented
class libraries. In contrast, class libraries provide a smaller granularity of reuse. For example, class
library components like classes for strings, complex numbers and arrays are typically low-level and
more domain-independent. Fayad (2000b) states that class libraries are typically passive and
frameworks are active and exhibit ‘inversion of control’ at runtime.

Patterns
Classes and interaction structure of object-oriented designs may become fairly complex, and
consequently difficult to develop and understand, which has led the study and development of patterns.

Journal of Business Systems, Governance and Ethics Vol 1, No 3

23

Design patterns are standard solutions to recurring problems, named to help people discuss them easily
and think about design. Design patterns can be used as a micro-architecture that applies to a cross-
domain design problem such as linked list and other classical data structure design. A design pattern
describes a concrete solution to an architectural problem that might arise in a specific context. The
solution proposed by the patterns is typically a way of structuring a cluster of objects and their
interaction (Brugali et al. 2000). Schmid (1995) states that the repetitive use of design patterns created
an overall architecture though each design pattern represents a micro architecture. He argues that design
patterns give a better performance with more concrete guidance on how to realise a framework. Patterns
are abstract, therefore they are not ready-made pluggable-solutions. They are most often represented in
object-oriented development by commonly recurring arrangements of classes and the structural and
dynamic connections between them. Graham (2001) argues that patterns are most useful because they
provide a language for designers to communicate in. In particular, design patterns have proven their
value in structuring the variable parts, called hot spots (allowing plug in software artefacts) of a
framework (Pee, 1994). Fayad (2000) defines patterns as a conceptual solution to a recurring problem.
Schmid (1995) argues that design patterns are an excellent means to describe the details of object and
class interactions but they are not suited to give an overall picture. Design patterns are reusable
architecture, object template, or design rule that has been shown to address a particular issue in an
application domain (Zamir 1999). Most design patterns come either as a static description of a recurring
pattern of architectural elements or as a rule to apply dynamically for when and how to apply the
pattern. The majority of software patterns produced to date have been design patterns at various levels
of abstraction but Fowler (1997, Graham 2001) introduces the idea of analysis patterns as opposed to
design patterns. Fowler’s patterns are reusable fragments of an object-oriented specification model
generic enough to be applicable across a number of specific application domains.

Both patterns and frameworks facilitate reuse by capturing successful software development strategies.
The primary difference is that frameworks focuses on reuse of concrete designs, algorithms, and
implementations in a particular programming language. In contrast, patterns focus on reuse of abstract
designs and software architectures. Frameworks can be viewed as a reification of families of design
patterns. Likewise, design patterns can be viewed as the micro architectural elements of frameworks
that document and motivate the semantics of frameworks in an effective way (Fayad, 2000b). Design
patterns have been used extensively in developing application frameworks. Many researchers (Schmid
1995, Fayad 1999a, Fayad 2000) have suggested using as many patterns as possible for developing
application frameworks because the abstractness and design expertise are embedded in patterns.

Components
Szyperski (1997) points out that component technology is standalone, which has gone beyond object
orientation. He defines software components as binary units of independent production, acquisition, and
deployment that interact to form a functioning system. In this definition a software component is best
thought as a unit with well-defined interfaces that has explicit context dependencies. He explains that
insisting on independence and binary form are essential to allow multiple independent vendors and
robust integration. Components are not just a big object. Eliens (2000) notes that components usually
consist of a collection of objects that provide additional functionality that allows components to interact
together. Szyperski (1997) states that a component is a unit of independent deployment, a unit of third
party composition, and it has no persistent state. By contrast, an object is a unit of instantiation, which
has a unique identity, it has state, which can be a persistent state, and an object encapsulates its state
and behaviour. A component is likely to come to life through objects and therefore would normally
consist of one or more classes or immutable prototype objects.

Component and application frameworks have a close relationship. Components in a framework provide
a generic architectural skeleton for a family of related applications, and complete applications could be
composed by inheriting from and/or instantiating framework components. A component has well-
specified functionalities with standard interface and behaviours, and a concrete implementation of an
area of the system. Atkinson (2002) states that there are two types of relationship between component

Journal of Business Systems, Governance and Ethics Vol 1, No 3

24

instances that are important at runtime. The first is composition, which captures the idea that one
component is a part of another. The key aspects of the composition relationship are:

1. Composite objects are responsible for the creation and destruction of their parts

2. The parts of a composite object take their identity from their composite object; and

3. Composition is transitive.

The other one is the client/server relationship. A client/sever relationship between two component
instances defines a contract between them. For components to be independently deployable, their
granularity and mutual dependencies have to be carefully controlled from the outset. Many application
frameworks use Common Object Request Broker Architecture (CORBA) to increase the interoperability
among each part of the framework. CORBA, a big component essentially has three parts: a set of
invocation interfaces, the Object Request Broker (ORB), and a set of object adapters. For invocation
interfaces and object adapters to work, two essential requirements need to be met. First, all object
interfaces need to be described in a common language. Second, all languages used must have bindings to
the common language (Szyperski 1997). Fayad (2000b) states that frameworks can be used to develop
components. Equally, components can be used in blackbox frameworks.

The Evaluation of Application Frameworks Technology
The literature survey indicates that building application frameworks is hard and implementing
application frameworks is as hard as building application frameworks (Fayad 1999, Fayad 1999b,
Fayad 2000, Lewis 1995, Pree et al 2000), and that building and implementing application frameworks
still need more methodological support (Fayad 1999a, 1999b, 2000). According to a survey (Fayad,
2000) the minimum time spent in developing an application framework was 0.5 person month and the
maximum time to develop an application framework was 1000 person months. The average time to
develop an application framework was about 21 person months. An application framework
conventionally consists of the core classes of an application, and one has to understand the basic
architecture of a particular application type to be able to specialise the framework (Pree et al, 2000).
Using an application framework may simplify application developers’ life since a framework provides
generic solutions for a particular application domain. However, average learning time is a big factor in
establishing the cost of the final application. The application developers have to understand what
solutions the framework provides, and to comply with the rules imposed by the framework. Current
literatures also indicate that application frameworks lack standards. For example, there is a suggestion
that reusable components and frameworks must be accumulated in a standardised format (Chen 1999).
Most researchers agree that the classification structure of an application framework must be appropriate
and manageable. Application developers will have difficulties with understanding the framework if the
structure of the framework is not clear and standardised.

Based on the literature analysis, this study proposes quality criteria to evaluate the quality aspects of
application frameworks. The main purpose of proposing the quality criteria is to evaluate application
frameworks more systematically. The quality criteria consist of four elements including correctness,
extendability, reusability and interoperability drawn from various studies concerning software
development and evaluation (i.e., Meyer 1988, Graham 2001 and Paul 2002). Correctness denotes that
output is true and meets the specification correctly within the application domain. Correctness is one of
the most important quality characteristics of software systems. In the context of software systems,
correctness implies that the applications should reach certain requirements defined by users.
Extendability means that applications should be easy to evolve and extend as requirements alter.
Extendability is essential to ensure timely modification and enhancement of services and features
(Schmidt, 1996). Technology evolution is even faster than before and the systems developed today must
meet the challenge of tomorrow. It is vital that the systems developed today can be extended when user
requirements change. Reusability denotes that applications should be built into reusable modules.
Reusability is essential to leverage the domain knowledge of expert developers to avoid re-developing

Journal of Business Systems, Governance and Ethics Vol 1, No 3

25

and revalidating common solutions to recurring requirements and software challenges. It is one of the
proven ways to increase product quality as the reusable modules of the software can be tested before
release. Interoperability: means that applications should be readily compatible with other systems.
Internet, distributed systems and networks development have made the information systems more
complex than before. It is often required for a system to communicate with other systems or integrate
with legacy systems.

The Results of the Evaluation

Correctness
This is the single most important quality aspect for any software systems from a systems testing point of
view. McConnell (1993) finds that industry average experiences are about 15 to 50 errors per 1000
lines of codes, the application division at Microsoft experiences about 10 to 20 defects per 1000 lines of
new developed codes during in-house testing and 0.5 defects per 1000 lines of codes in released product.
So the reduction of the lines of code written by application developers may be one way to reduce the
potential errors of applications. From the perspective of implementing application frameworks the
applications developers who use application frameworks will reduce the new lines of codes required
because the application framework itself is a semi-completed application. If the framework is well tested
then the correctness of the application building upon the framework will increase because the
application developers write less code. In other words, the application developers could reuse the codes
and the structure of the framework. It is possible to reduce the potential errors caused by application
developers if the lines of codes requested for an application is reduced. However, the initial cost for
development of the application frameworks would be high (Fayad, 2000) because of the complex nature
of developing and implementing frameworks. Fayad (2000d) also argues that a framework can produce
higher quality because of the demands of a wide customer base and the fact that commercial
frameworks will have successfully completed lengthy beta software programs. Frameworks technology
uses class libraries, design patterns and components, which are well tested. Thus, the use of the
technology will potentially increase the correctness of applications, which was built upon class libraries,
patterns and components.

Extendability
Objects technology promotes extendability by utilising the concepts of abstract, inheritance,
encapsulation and polymorphism. Application frameworks supports extendability by providing hot spots
that allow applications to extend their stable interfaces (Fayad, 1997). However, with excessive data
coupling (i.e., high inheritance coupling in whitebox frameworks approach breaks the modularity
principle) the framework loses its flexibility and it is difficult to combine with other frameworks.
Furthermore, it has been noticed that updating components is difficult and problematic (Fayad, 2000)
for applications developed by implementing frameworks. It is not easy to achieve low coupling in
practice although an idealised framework component should have clean interfaces, be cohesive and have
little data coupling.

Reusability
Application frameworks technology promotes large-scale reuse through the architecture, the module and
the code. Application developers not only reuse the code but also design expertise embedded in
application frameworks when they implement the frameworks. Despite the difficulties of developing and
implementing, the application frameworks approach has shown great potential in terms of capturing the
domain knowledge, architecture, patterns, components, and programming mechanisms in the context of
systems development.

Journal of Business Systems, Governance and Ethics Vol 1, No 3

26

Interoperability
Applications developed using frameworks may have problems to interoperate with other applications
since sometimes the frameworks take control of the operation, which potentially increases the difficulty
of interoperation with other systems including legacy systems (thread dispatch becomes difficult to
manage the construction of applications by combining two or more frameworks because the individual
frameworks assumes it has the main control of the application). Thus it is possible to have a low
interoperability of an application developed by implementing frameworks. The summarised result of the
evaluation is shown in Figure 2 above.

Conclusions
The experiences accumulated by the research community indicate that application frameworks apply
object-oriented concepts, aimed at large-scale reuse likely domain specific and can exist in any
development stage. Applications developed by implementing application frameworks may increase
quality in terms of correctness and reusability with some penalty factors. The extendability and
interoperability may be reduced due to the high inheritance coupling nature of the application developed
from application frameworks. The study also shows that the methodological support concerning
building and implementing application frameworks is inadequate. Application frameworks technology is
still immature and not yet to be another silver bullet but potential is imminent.

References
Booch, G., Rumbaugh, J. & Jacobson, I. (1999). The unified modelling language user guide. Addison-

Wesley.
Bruel, J.M, & Bellahsene, Z.(eds. 2002) Advanced object-oriented information Systems, OOIS 2002

workshops Montpellier, France, September 2, 2002
Brugali, D… et al (2000). Frameworks and pattern languages: an intriguing relationship, ACM

Computing Surveys, Volume 32, 2000.
Chen, D. J., Koong, C. S., Chen, W. C., Huang, S. K., and Van Diepen. N.W.P (1999). Integration of

reusable software components and frameworks into visual software construction approach. Journal
of Information and Science and Engineering 2000.

Coad, P. & Yourdon, E. (1990). Object oriented analysis (2nd), Englewood Cliffs, NJ: Yourdon Pres:
Prentice-Hall.

Cockburn A. (1997). Surviving object-oriented projects: A Manager’s Guide. Addison-Wesley.
Deitel, H.M (2003). Visual Basic.net For Experienced Programmers Developer series. Upper Saddle

River, NJ: Pearson Education.

Criteria Result Reasons Penalty factors

Correctness High - Application developers write less code.
- Class libraries, design patterns and

components technology

- High initial cost
- Difficult to test

Extendability Depends
(could be
low)

Depends on the nature of the framework:
- Excessive inheritance coupling may

reduce the flexibility and make difficult
to combine with other frameworks.

- Also, updating component is difficult
and problematic for applications
developed by implementing frameworks.

- High initial cost,
- Increase complexity

Reusability High - Architecture, module and code reuse - High initial cost
- Difficult to use

Interoperability

Depends
(could be
low)

Depends on the nature of the framework:
- The nature of reversion of control
- With legacy systems

- High initial cost
- Increase complexity

Figure 2: Evaluation result

Journal of Business Systems, Governance and Ethics Vol 1, No 3

27

Due, R.T. (2002). Mentoring object technology projects NJ07458: Prentice Hall PTR.
Eliens, A. (2000). Object-oriented software development, 2nd ed. England: Pearson Education.
Fayad, M.E., & Schmit, D.C. (1997). Object-oriented applications frameworks.
Communication of the ACM, Oct 1997 v40 n10, 32.
Fayad, M. E., Schmidt, D. & Johnson, R.E. (1999a). Building application frameworks: object-oriented

foundation of framework design. New York: John Wiley & Sons.
Fayad, M. E., Schmidt, D. & Johnson, R.E. (1999b). Implementing application
frameworks: object-oriented framework at work. New York: John Wiley & Sons.
Fayad, M. E., & Johnson, R.E. (2000). Domain specific application frameworks: frameworks

experience by industry. New York: John Wiley & Sons.
Fayad, M. (2000b). Introduction to the computing surveys’ electronic symposium on object oriented

application frameworks. ACM Computing Surveys, Volume 32, No.1, March 2000.
Fayad, M. (2000d). Enterprise Frameworks: Guidelines for selection. ACM Computing Surveys,

Volume 32, 2000.
Fowler, M. (1997). UML Distilled, 2nd ed, Harlow, England: Addison-Wesley.
Graham, I. (2001). Object-oriented methods principles & practice (3rd). London: Addison-Wesley.
Johnson, R (1997). Frameworks for object-oriented software development. Communication of the

ACM, Oct 1997 v40 n10, 39
Lewis T., Rosenstein, L., Pree, W., Weinand, A., Gamma, E., Calder, P., Andert G., Vlissides J.&

Schmucker, K. (1995). Object-oriented application frameworks. Greenwich: CT Manning.
McConnell, S (1993). Code complete : a practical handbook of software construction Redmond,

Washington: Microsoft Press.
Meyer, B. (1988). Object-oriented software construction. Englewood Cliffs NJ: Prentice Hall.
Paul, C et al (2002). Evaluating software architectures methods and case studies. Addison-Wesley.
Pree, W. and Koskimies, K (2000). Framelets- small and loosely coupled frameworks. ACM Volume

32, Number 1es, March 2000.
Schmidt, D. C. (1996). Lessons learned building reusable OO telecommunication software

frameworks. Lucent Labs Multiuse Express magazine, Vol. 4, No. 6, December, 1996.
Schmid, H, A. (1995). Creating the architecture of a manufacturing framework by design patterns

OOPSLA 95 Austin.
Szyperski C. (1997). Component software: Beyond object-oriented programming. Addison-Wesley

Longman.
Zamir, S. (1999). Handbook of object technology (ed.). CRC Press LLC.

Journal of Business Systems, Governance and Ethics Vol 1, No 3

28

