

Abstract
In this paper, we investigate the nature of the relationships between dimensions of governance in Open
Source (OS) communities. A recent review highlighted this issue as critical. Furthermore, this issue has
been recognized as strategic for managing the trade-off between innovation and standardization, the
capacity of firms to profit from their investment in open source, and the sustainability of OS projects. Our
results are based on a comparative analysis of 40 OS projects contained in the Freshmeat dataset. For
each project, we collected data on the governance solutions implemented. Governance mechanisms have
been ranked for their degree of openness. Our findings show that OS governance is configurational. Those
configurations are defined along two dimensions: leadership and decision-making distribution, and
reciprocity of the appropriability regime. Four configurations are indeed defined: open source, sponsored,
reciprocity-based, and tolerant dictatorship. Those configurations have been defined based on an
exploratory factor analysis.

Keywords
OSS Governance, Open Source Software, Community Management, Design of Participation Architecture

Introduction
Scholars have become increasingly aware of the need to specify the type of governance in an Open
Source Software (OSS) project (O’Mahony 2007). Governance, according to Williamson (1999), is “a
means by which to infuse order in a relation where potential conflict threatens to undo or upset

opportunities to realize mutual gains.”
Governance structure is defined as the
implicit or explicit contractual framework
within which a transaction is located. In
OS communities, the licensing agreement
is the contractual framework. Its main
characteristic is to bound the efficiency of
private appropriation as a means of
incentive, coordination, and control (e.g.,
Damil and Lecocq 2006). OS governance

Copyright © 2011 Victoria University. This document has
been published as part of the Journal of Business Systems,
Governance and Ethics in both online and print formats.
Educational and non-profit institutions are granted a non-
exclusive licence to utilise this document in whole or in
part for personal or classroom use without fee, provided
that correct attribution and citation are made and this
copyright statement is reproduced. Any other usage is
prohibited without the express permission of the publisher.

1

The Governance of Open Source Software
Communities: An Exploratory Analysis

Ivan De Noni and Andrea Ganzaroli
University of Milan, Italy

Luigi Orsi
University of Padua, Italy

This study has received funding from the European Community’s Seventh Framework Programme FP7
– 2007 – 2013 under grant agreement n° 225349.

can be defined as the means of achieving the direction, control, and coordination of wholly or partially
autonomous individuals and organizations on behalf of the OSS development project to which they
jointly contribute (Markus 2007). In this perspective, in a recent review of the literature, Markus
(2007) argued the need for deepening our understanding of the relationships between governance
dimensions. Are those dimensions independent, or is OS governance reducible to a small number of
configurations? If OS governance is reducible to a limited set of configurations, do those have an
impact on the efficiency and/or effectiveness of these communities? Those are the main questions to
which this paper attempts to provide an answer.

Following Markus (2007), in the existing literature three main perspectives are identifiable. The first,
monolithic, suggests that OS governance is an integrated and self-coherent system of coordination and
control. Furthermore, this model of governance is an alternative to the market, hierarchy, and
networks (Demil & Lecocq 2006). In the second, multidimensional, governance is the result of
multiple equilibriums. Therefore, almost an infinite number of governance solutions can be
implemented. Finally, in the third OS, governance is defined as configurational (e.g., West &
O’Mahony 2008; West 2003; O’Mahony & West 2005; von Hippel & von Krogh 2003). There is a
strong correlation between governance dimensions. Therefore, only a limited number of solutions can
be set up. Furthermore, according to this perspective, in those configurations elements of the market
and of the hierarchy are mixed together.

Among those who see governance as configurational, a distinction is made between community
managed and sponsored (O’Mahony 2003; O’Mahony 2007; West & O’Mahony 2008). The first term
characterizes projects whose governance is independent from the influence of a single company or a
coalition of companies (West & O’Mahony 2008; West 2003; O’Mahony & West 2005; von Hippel &
von Krogh 2003; Shah 2006). The second, differently, defines communities where governance is
largely controlled by a single firm or a coalition of firms. Those two configurations are often defined
as the opposite ends of a single continuum (O’Mahony 2003; O’Mahony 2007; O’Mahony & Ferraro
2007; West & O’Mahony 2008; Shah 2006a). Thus, governance dimensions are considered to form a
single bundle, and governance is the trade-off between two contradictory objectives (West &
O’Mahony 2008; O’Mahony & West 2005; Shah 2006a). The first is to stimulate participation and
innovation through openness and appropriability. The second is to secure profitability and/or
compatibility by retaining some degree of control over the source code development.

Our analysis is based on a sample of 40 case studies of OS projects. These cases have been extracted
from the Freshmeat dataset. The cases have been sampled randomly from the dataset, taking into
account the type of project, the vitality score, and the number of registered users. For each project in
the sample, data about the governance have been collected according to the dimensions of governance
proposed by West and O’Mahony (2008). However, this model provides us only a term of reference to
conduct a comparison of those projects. Data have been collected by visiting the website of the project
and, if not sufficient, by sending an e-mail to the project leader. We conducted a correlation analysis
to verify whether those dimensions were correlated. This analysis confirms that OS governance is
configurational. Therefore, an exploratory factor analysis with only one factor has been developed to
test whether these dimensions could be reduced to a single continuum. The resulting model is
structurally sound. However, a group of three variables is not explained by the model. Therefore, we
conducted a second exploratory factor analysis with two factors. The second model is also robust.
Therefore, OS governance is reducible to two latent factors: leadership and decision-making
distribution, and reciprocity of the appropriation regime. The intersection between these two
dimensions defines four OS governance configurations: open source, sponsored, reciprocity-based,
and tolerant dictatorship. Furthermore, to explore whether those configurations might have some
implications in terms of a community’s performance, we conducted an ANOVA1 with respect to the
vitality score and the vitality score calculated on the major releases. In both cases, the configuration
results are statistically significant.

1 Analysis of Variance: in its simplest form, ANOVA provides a statistical test of whether the means of several groups are all equal.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

2

The structure of the paper is the following. In the next section, we address the concept of OS
governance. We focus on two major aspects. The first is the purpose of OS governance. We argue that
the main purpose of OS governance is to leverage participation and contribution. The second is
whether and how the objective of governance changes over time. From this second point of view, we
argue that the set of resources required for an OS project to succeed changes over time. Therefore, the
objective of OS governance is expected to change compatibly. In section 4, we analyze the specific
dimensions of OS governance. Sections 5 and 6 are devoted to methodology and data analysis,
respectively. Results are discussed in section 7. Finally, section 8 is devoted to concluding remarks
and further research.

The Purpose of OS Governance
Although OS governance is a rather recent issue in the literature, identifying some differences in the
way this category is conceptualized is already possible (Markus 2007).

The first difference is in the purpose assigned to OS governance. Contributions, from this perspective,
can be divided into three categories. The first category refers to those who believe that the main
purpose of OS governance is to solve collective action dilemmas (e.g., Demil & Lecocq 2006; Franck
& Jungwirth 2003; Bonaccorsi & Rossi 2003; Rossi & Bonaccorsi 2005; Osterloh & Rota 2007).
Those who subscribe to this view tend to focus more on the lack of private incentives and on the way
this lack is overcome in those communities. Differently, those who believe that the main purpose of
OS governance is to sustain coordination and control highlight the lack of hierarchical power due to
the voluntary nature of participation and, in contrast, the specific coordination mechanisms set up by
these communities to secure the quality of the collective good produced (Lee & Cole 2003; Kogut &
Metiu 2001; Crowston 1997; Scacchi 2004). Finally, a third perspective refers to those who believe
that OS governance serves to create a better climate for contributors (Shah 2006a; West & O’Mahony
2008; Baldwin & Clark 2003). Those who subscribe to this latest perspective argue that governance
does not have only a passive role. Governance is not only a solution to an existing problem but is also
strategic for the type or resources attracted and the quality of the social relationships prevailing in a
community.

In this paper, we subscribe to the third perspective. Therefore, we assume that the purpose of OS
governance is not only to support collective action or to secure the quality of the collective good
produced but also to secure a sufficient supply of people to sustain development and innovation. The
basic idea behind this view is that the capacity of a community to attract and retain people willing to
collaborate on development depends on the quality of the social atmosphere and indeed of the social
relationships prevailing in the community. The hypothesis is that people, if they can choose, prefer to
work in a workplace that corresponds to their interests, attitudes, and competencies. In the case of OS,
this hypothesis is even more justified because most people are not obliged to participate in an OS
project but choose to participate2 (e.g., Raymond 1999; Bonaccorsi & Rossi 2003). However, their
question is not so much whether they want to participate in an OS project but in which one they want
to participate (Markus 2007). Furthermore, people are not even obliged to remain on a project. The
costs of switching from one community to another are low. Therefore, if people are dissatisfied with
their experience of being part of a given community, they will choose another community or, at worst,
definitively leave the OS movement.

If we assume that OS governance is strategic for the quality of the people attracted and retained in a
community, the focus is no longer on OS governance per se and how this is different from other forms
of governance, but also on the differences existing among alternative solutions/configurations of OS
governance and how those differences impact the decision to participate in an OS community.

Extensive literature addresses participants’ motivations for participating in an OS community
(Bonaccorsi & Rossi 2003; Rossi & Bonaccorsi 2005; Lerner & Tirole 2000; Franck & Jungwirth

2 Someone could argue that a number of employees are obliged to work for an OS project. This is true. However, the labor market in the

software industry is very competitive. Therefore, someone who is not willing to work for an OS company can relatively easily change
jobs. Furthermore, empirical analysis shows that most people participate in OS projects to enhance their career opportunities.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

3

2003; Shah 2006a; Lakhani & von Hippel 2003; Feller & Fitzgerald 2002). It is not an objective of
this paper to discuss this topic in-depth. Otherwise, we simply summarize those arguments useful to
our scope. First, there is a distinction among three categories of motivations: economic, social, and
technological (Feller & Fitzgerald 2002). Economic reasons are traced back to a classical cost-benefit
framework. Social motivations are often tied to the hacker culture that originally inspired the free/open
source software development. Finally, technological motivations are tied to the opportunity to learn
from others’ contributions and feedback. These categories are applicable to individuals and firms.
However, the content changes accordingly to the type of actor considered (Feller & Fitzgerald 2002;
Rossi & Bonaccorsi 2005; Bonaccorsi & Rossi 2003; Dahlander & Magnusson 2005). Economically
speaking, individuals are motivated by monetary rewards, low opportunity costs, and gaining a
reputation among peers for future career benefits. Differently, firms are motivated by being
independent of the price and license policies of the large software companies, making money on
complementary services or products, and hiring good IT specialists. Individuals’ social motivations
are the fun of programming, altruism and gift economy, sense of belonging, and fighting against
proprietary software. Firms, from this perspective, tend to conform to the values of the hacker culture
either to reciprocate or not dislike the other members of the community. However, a number of firms
behave parasitically. Finally, from a technological point of view, individuals are motivated by the
opportunity to learn, to contribute and receive feedback, to work with leading-edge technology, and to
follow a personal compulsion. Firms, differently, are more motivated by exploiting feedback in terms
of cost reduction and innovation, diffusion and win adoption, and promotion of standardization.

However, to design a governance architecture capable of enhancing the capacity of a community to
attract and retain qualified people, knowing that people and individuals participate for multiple and
different reasons is not sufficient. It is also necessary to know how those attitudes translate into
preferences in terms of community environment and to what extent these preferences are compatible
with each other.

From this perspective, Franck and Jungwirth (2003) proposed to distinguish participants in two
groups: rent-seeker and donators. Rent-seekers are mainly motivated by economic reasons. Donators,
on the contrary, are more driven by social/idealistic motivations, such as contributing for free to the
production of a collective good. Therefore, donators do not expect to receive anything in exchange for
their contributions. According to those authors, the basic institutional innovation in OS has been the
crafting of a governance structure, which enables rent-seeking without crowding out donations. The
core of the authors’ argument lies in the peculiar nature of free/open source software licenses. These
licenses safeguard the value of the software’s reputation and, therefore, the investments made by rent-
seekers in the community. In addition, these licenses secure donators such that nobody can turn
donations into private profit before they have contributed to the production of the public good. The
objective of these licenses is not to prevent rent-seekers from making money out of donatives’
resources, but to buy this right by contributing to the development of the public good.

This scenario, according to our perspective, is oversimplified. It assumes that those who are motivated
by technological reasons do not display any preferences in terms of work environment (Feller &
Fitzgerald 2002; Bonaccorsi & Rossi 2003; Rossi & Bonaccorsi 2005; Dahlander & Magnusson
2005). However, this is not the case. Their motivation to participate is tied to the opportunity to learn
and experience leading-edge technologies. Therefore, it unlikely that these people are going to be
attracted by communities that are more oriented toward efficiency, standardization, and diffusion.
Furthermore, these people value their freedom to create more (Florida 2002). Therefore, they prefer to
work in contexts that are open and where they do not have to ask for permission. Finally, they tend to
be ego-centric. Therefore, they prefer a workplace where their cleverness can be displayed and
appreciated. Thus, their profile is not equal to that of rent-seekers, who are more concerned with their
profit opportunities, and that of donators, who are more concerned with the public nature of the source
code. However, those who are driven by technological reasons are often critical for overcoming the
initial phases in the development of a collective good.

Nonetheless, this perspective does not consider that firms can also be motivated by different reasons to
participate depending on the firm’s specific business model. From this, Dahlander and Magnusson
(2005) distinguish among three approaches: symbiotic, commensalistic, and parasitic. Parasitic firms

Journal of Business Systems, Governance and Ethics Vol 6, No 1

4

exploit collective resources while avoiding, as far as possible, conflict with the community.
Commensalistic firms also exploit collective resources. However, these firms try to gain acceptance
from the community for using its resources in commercial applications. Symbiotic firms build up a
win-win relationship with the community. These firms not only respect the rule of the communities
but also are involved in their development. Therefore, these firms share their code and infrastructures
with the community. However, these firms’ behavioral attitude toward the communities will depend
on the firms’ business model. From this perspective, West and Gallagher (2006) distinguish between
four OS business models: pooled R&D/product development, spinouts, selling complements, and
donating complements. Only when the business model is based on the selling of complements might
there be tension between firms and communities. Furthermore, the degree of this tension depends on
the kind of complements the firms sell. If the business model is service-oriented, then this tension will
be lower than when the source code is integrated into a commercial software application.

Managing the Trade-Off between Incentives
In the previous section, we argued that the main purpose of OS governance is to attract and retain an
adequate combination of people, firms, and resources. Furthermore, we also suggest that people
respond differently to different types of incentives and work environments. Therefore, someone might
be more concerned about the risk that his or her contribution is exploited for economic purposes.
Others are more concerned with the type of technology they are using and their freedom to create.
Finally, others participate because the company they are working for asks them to do it. The main
problem is that the success of an OS community depends on the contributions of all these people and
the appropriate combination of these people changes with time. Therefore, the setup of a governance
structure should take into account all these needs at the same time and how those evolve with time.

Managing the trade-off between incentives: static analysis
Bonaccorsi and Rossi (2003), from this perspective, have highlighted participants’ heterogeneity as
strategic for the success of an OS community. This enables a more efficient allocation of tasks and the
initial phases of the supply of a collective good to be overcome. In OS communities, due to the lack of
hierarchal power, tasks are not centrally allocated but self-selected by each participant according to his
or her interests and competencies. Therefore, a wider range of interests and competencies secures that
a larger number of tasks will be selected and accomplished. This is particularly relevant in the case of
what Bonaccorsi and Rossi define as “non-sexy” activities. Those activities are not attractive to skilled
developers. However, these activities, whose development does not require advanced skill, are critical
for the functionality, usability, and diffusion of a technology. Therefore, they may be attractive either
to skilled users or developers employed by firms to contribute to OS development. Therefore, OS
governance should secure an appropriate degree of heterogeneity to optimize the efficiency of the
development process.

Managing the trade-off between incentives: a life cycle perspective
Second, the quality of this trade-off should change over time. From this second perspective,
Bonaccorsi and Rossi highlight how the evolution of an OS project can be characterized in three
phases: invention, innovation, and diffusion. In the invention phase, the main problem to overcome is
that of bringing together a small group of strongly motivated and resourceful developers capable of
producing a collective good without the cooperation of others. In this phase, therefore, governance
should provide participants with the opportunity to learn and share knowledge in the leading-edge
context of technological development. In the innovation phase, the work of this initial group has to be
complemented by the work of a second and larger group that focuses more on enhancing technological
efficiency and usability. In this phase, therefore, governance should extend its portfolio of incentives
in order to attract leading users and firms. In this phase, the bifurcation of the release process in stable
and unstable, and the two-tier structures, highlighted by Lee and Cole (2003), enables the community
to stimulate the cooperation between the two groups, keeping, at the same time, separated the sets of
incentives in place. Finally, in the diffusion phase, a great role is played by firms that can leverage
their distribution networks to enhance distribution. Therefore, governance, in this third phase, should

Journal of Business Systems, Governance and Ethics Vol 6, No 1

5

be more oriented toward supplying incentives to firms. This may lead part of the participants to the
first group to leave the community because of their commitment to free information accessibility.
However, this may happen in any case because the project is no longer technologically challenging.
An evolutionary perspective of OS governance is compatible with more recent contributions
explaining how OS governance emerged in OS communities (O’Mahony & Ferraro 2007; de Laat
2007).

Dimensions of OSS Governance
So far, we have argued that OS governance is ever more critical in shaping the capacity of a
community to attract the appropriate combination of resources required over time, securing
development efficiency, effectiveness, and innovation. However, we have not yet addressed the
portfolio of mechanisms available and how those impact the attractiveness of those communities with
respect to the different targeted resources. We will develop a comparative analysis of a panel of OS
communities in order to understand if there is a correlation between the governance mechanisms
adopted and whether those mechanisms are combined together according to a specific configuration.
Therefore, our focus is not on the factors affecting the decision to participate in an OS project but on
which OS projects participate. Only a few contributions have addressed this specific question.
However, most have focused on the mechanisms either open source communities have used to
safeguard their community-model or sponsors have implemented to open up their business model and
retain some degree of control of the development process. In so doing, however, these authors take a
specific stance, either that of the community or that of the sponsor. Our objective is different. We do
not want to take ex-ante a specific stance, but to understand, ex-post, whether there are differences in
the way those mechanisms are configured. Therefore, in this section we limit ourselves to developing
a list of those mechanisms and ranking them according to their degree of openness.

In the literature, two models can be applied to develop such a comparative analysis. The first is
Markus’s (2007) model. This is the result of an extensive literature review. The model defines the
main dimensions of OS governance discussed in the literature. The second is West and O’Mahony’s
(2008) model. This is the result of a long series of works empirically exploring the differences
between sponsored and community managed projects. The two models, in our research, are not so
different. Markus considers two additional dimensions: communication media and conflict resolution.
However, we decided not to consider these two dimensions. The first because the communication
media used in those communities are similar. This argument would not apply to communication
processes and conventions. However, mapping those differences in a comparative model is difficult
and incompatible with the attempt to consider a large sample of projects. The second because
communities use many methods to settle conflict. Therefore, ranking those processes in terms of
openness and transparency is not always possible. Part of this aspect is contained in the way decisions
are made in the community. However, we do not apply West and O’Mahony’s model. In their model,
in fact, governance dimensions are already bundled together as a way to characterize the distinction
between community versus sponsored managed OS projects.

The most important instrument in the governance structure of open source projects is the licensing
agreement (e.g., Demil & Lecocq 2006; Franck & Jungwirth 2003). Many different licenses are
defined OS. However, to be recognized as such, those agreements should satisfy the ten requirements
of the OSI (Open Source Initiative) definition. For the matter of governance, licensing agreements are
often categorized in two broad categories: viral/free and permissive/open (e.g., Bonaccorsi & Rossi
2003). Viral code is defined as such because it “infects” the source code with which it comes in
contact. This means that if a piece of private code is integrated with a piece of free code, the first has
to be made freely available. Free licenses are designed to achieve two major objectives. The first is to
prevent somebody from conditioning, ex-post, development by claiming property rights on the part of
the source code. The second is to extend the knowledge-sharing base. Free licenses, however, are
largely incompatible with the participation of firms, which may want to maintain some degree of
control of their internal development and source code. Therefore, open source licenses, which do not
oblige users to share their own source code, propose a more pragmatic approach. However, the value
of collective contributions and individual reputations is often safeguarded by forcing users to quote

Journal of Business Systems, Governance and Ethics Vol 6, No 1

6

original developers and preventing, if not agreed otherwise, the use of any trademark or brand
associated with the original community for marketing purposes (O’Mahony 2003). Therefore, these
licenses enable firms to make commercial use of open source code in an exchange of credit and
reputation. Furthermore, the licenses provide users with incentives to negotiate the users’ participation
in the community in terms of human, material, and financial resources to get access to the
communities’ brand names and reputation. A third licensing strategy is often used by companies to
stimulate external collaboration. This is named dual licensing and consists of making a distinction
between commercial and non-commercial users. Commercial users are required to pay a fee to get
access to the source code. Conversely, the source code is freely available for non-commercial
purposes. The variable licenses as treated as follows. We distinguish among four license categories:
recursive/viral, partially recursive, permissive, or pragmatic, dual. Viral licenses have been defined as
the most open and the dual licensing scheme as the most closed. A second governance arrangement
that has received growing attention in the literature is the institutionalization of non-profit foundations
(O’Mahony 2003). These foundations were originally institutionalized to strengthen the capacity of
the OS community to secure future accessibility to the source code. Therefore, they have been
entrusted mainly with a legal mission. Few, however, have evolved to the next stage, where they are
deeply involved in the governance and management of the communities. For instance, part of the
mission of the GNOME3 foundation is to set up common standards and guidelines for the
development process and for selecting contributions, to manage the release process, and to negotiate
commercial agreements with external parties. In these few cases, the institutionalization of a non-
profit foundation responds not only to the need to secure property rights but also to institutionalize the
original business model. However, non-profit foundations, such Mozilla and Qt, have been prompted
by sponsoring firms. But they were moved by a different purpose, that is, to strengthen their
commitment to supply open accessibility to the source code in the future. Therefore, source code
ownership is often transferred to those foundations. However, this does not mean that neither
management of the project nor control of the source code is shared with the community. This depends
on how decision-making rights are distributed in the community (see below). Therefore, we
distinguish among three states. The highest rank of openness has been attributed to a community
governed by a foundation. The rationale is that those foundations reflect an attempt to make openness
and accessibility institutional. The lowest rank, conversely, has been attributed to communities that are
still governed by an informal leader.

Decision-making rights have been distributed in the community in different ways. Open source
licenses grant owners with the exclusive right to decide on the authenticity of the source code.
Therefore, legally speaking, they are the only ones who can decide which functionalities and lines of
code should be included in each software release. However, to make sure that the community is going
to collaborate in the future, owners are required to negotiate and share the content of this decision
(West & O’Mahony 2008). Owners implement different strategies to structure and coordinate this
negotiation, such as dealing directly with the community or institutionalizing roles that are entrusted
with the power to decide. If the latter is the case, the question is to what extent those roles are
collective, and who can be appointed to perform those roles and how. In our model, we focused on
two roles: project leadership and release authority. The highest rank has been assigned to collective
authorities democratically elected. The rationale is that the more those authorities are open and
accessible, the more people trust the authorities and are willing to participate and collaborate. Related
to decision making, there is the issue of membership. Members, in fact, are often entrusted with the
power to directly make changes in the source code in the community repository. However,
membership is often a precondition for being elected to an institutional role in the community.
Therefore, the rules governing membership are critical for understanding to what extent leadership is
accessible. The highest rank of openness has been attributed to communities where the rules for
becoming a member are formalized and membership is individual. Formalization has been evaluated
positively because it enables potential participants to evaluate and verify the respect of those rules.

3 (Abbreviation of GNU Network Object Model Environment) is a desktop environment—a graphical user interface that runs on top of a

computer operating system—composed entirely of free and open source software.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

7

The decision to allow firms to become members has been penalized in terms of openness because
these companies could be granted with more power to control the development of the project.
Furthermore, the companies may also discourage individuals’ participation. Differently, we did not
attribute any value to the content of those rules. There are mainly two reasons. First, most of these
rules are merit oriented. Thus, membership is granted to those who provide major contributions in
terms of quantity, quality, and continuity to the development of the community. Second, defining a
common scale to evaluate the ranking of those rules is difficult. A third aspect that has been used to
characterize decision making is membership.

The last dimension we consider is participation in the development process (Lee & Cole 2003). The
extent users are involved in the development is relevant to shaping how users’ motivation evolves
(Shah 2006b). The more the production process is open to external contribution, the more participation
is long-term and driven by technological and social reasons. Conversely, this is not the case in gated
communities, where development control is much tighter. We characterize participation in the
development in terms of source code availability, changes committed, and sub-project creation (West
& O’Mahony 2008). Making source code available is a must in open source communities. However,
this can be made more or less accessible by regulating the way people get access to the source code.
For instance, accessibility may be constrained to the receipt of a formal request. Second, the process of
committing changes in the source code repository may be centralized or distributed. In this second
case, users are more stimulated to participate because they have more influence on development.
However, commercial firms may prefer to maintain tight control over this process to prevent damage,
and enhance compatibility and efficiency. Finally, users may be authorized to start up their own
independent projects to address unmet needs. However, this may turn out to be a loss of opportunities
for the source code owner. A fourth dimension is also relevant to shape participation in the
development process. This is the degree of modularity. Baldwin and Clark (2003) show that a modular
architecture enables work to be equitably distributed among developers and makes joining and staying
in the collective development effort a strictly dominant strategy compared to coding in isolation.
However, the main reasons we decided not to include this dimension is that technical modularity is
only a condition sine qua non. It is not sufficient that the architecture of a code base is modular to
stimulate participation. The political will is also required, and this is reflected in the other three
dimensions included. In Table 1, we summarize the description of the eight OS governance variables
we used to map governance dimensions.

Methodology
The objective of this contribution is to identify the main forms of governance in OS communities. To
achieve these objectives, we conducted an exploratory analysis of 40 open source projects. The list of
the projects to analyze was extracted randomly from a dataset of projects listed on Freshmeat.net. As
Feller and Fitzgerald (2002) point out, Freshmeat is a gathering place for the “grassroots” OSS
community; thus, we expected that most of the projects we observed there would be of a more
“traditional” nature rather than those that are sponsored by large companies (e.g., Netscape) or that are
already established and successful (e.g., Linux). We referred to this database because of the
availability of additional data on project productivity, creativity, and perceived quality such as the
vitality score. Vitality is calculated using the number of announcements about a project and the time
since its last release. All the analyses in this paper were developed with R 2.9.0 software.4
FLOSSmole (Free/Libre/Open Source Software mole) does not collect data on project governance.
Therefore, these data were collected by visiting projects’ websites. The sample also takes into account
project origin. West and O’Mahony argue that the distinction between sponsored and autonomous
communities reflects a different project leadership purpose. Therefore, we expect that project origin,
defined as community founded versus sponsor founded, has some impact on governance.

4 R is an open source software environment for statistical computing and graphics.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

8

Table 1: Description of the Variables
Variable Score Description

Foundation X1 0 No foundation
1 The foundation provides legal protection against copyright abuses or is not yet fully

established.
2 The foundation is also involved in standardization issues and strategic management.

Type of license X2 0 Dual
1 Permissive
2 Partially recursive (e.g., LGPL)
3 Recursive

Membership X3 0 Membership is not clearly defined and regulated.
1 Membership is planned for enterprise.
2 Membership is defined and open only to individuals.

Changes to source
code

X4 0 Proposed changes should be submitted to project leaders, who are the only ones with the
authority to decide.

1 The proposed changes are evaluated and discussed in public forums and/or under the
supervision of a project leader.

2 Committed members are authorized to commit changes directly in the source code
repository.

Sub-project X5 0 Sub-projects may not be set up.
1 Sub-projects may be set up, but project leaders retain control over copyright.
2 Sub-projects may be set up, but they are not included in the main distribution.
3 Sub-projects may be set up, which are downloadable as versions or accessories.

Release authority X6 0 There is no formal release authority and/or the process has not been formalized.
1 There is no release authority, but the process is open to members who have attained a

certain status or indirectly through suggestion systems.
2 There is a release authority, and the process through which members can contribute to it

is formalized and accessible.
Leadership and
decision making

X7 0 There is no formal board.
1 There is a board, but members are appointed by the project owner.
2 The decision-making power is delegated to a board of directors whose members are not

elected but chosen by the sponsor or by the founders.
3 There is a board, and members are elected by the community.

Access to the code
and bug reporting

X8 0 Access to source code, although guaranteed, is limited to subscribers or to the previous
release, or made arbitrarily complex. To protect the sponsor’s benefits, obtaining access
requires sending a formal request to get access to the repository.

1 Access to the source code is granted and made simple in order to attract new participants
in the development process.

Therefore, our sample is formed by 28 community-founded projects and 12 sponsor-founded projects.
Finally, the sample is made up of projects with a vitality score greater than 0 and a number of
registered developers greater than 30. The vitality score is an index that measures the vitality of a
project. It is 0 when not a single line of code has been issued since the project has been registered on
Freshmeat.net, and its value increases as the number of releases increases. Therefore, choosing only
projects with a vitality score greater than 0 serves to make sure that a version of the software has been
released. There are two reasons for taking into account only projects with a number of registered
developers greater than 30. The first is to make sure that the project has been capable of attracting a
sufficient number of developers. The second is that the number of contributors is large enough to
require making governance explicit.

Data Analysis
In Table 2, the main descriptive statistics are summarized. The first step of our analysis was to verify
correlations between OS governance dimensions. Correlation analysis confirms that OS governance
dimensions are strongly correlated (see Table 3). Therefore, the results are compatible with the
hypothesis that OS governance is reducible to a single continuum (latent factor) between autonomous
and sponsored. To further explore this hypothesis, we conducted an exploratory factor analysis5 with a

5 Reducing data to a smaller set of summary variables or latent variables.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

9

single factor (Table 4). The resulting model is structurally sound, as confirmed by the values of the
chi-square statistic (a chi-square value significantly greater than 1 and a p-value close to zero).
However, the factor identified does not explain all the variables in the same way. The factorial weight
of the variables (loadings), as also confirmed by the uniqueness values, shows that the model explains
in particular the variance of x1, x3, x4, x6, and x7. Actually, calculating Cronbach’s alpha on only
these variables, we obtain a value equal to 0.868, significantly higher than the value calculated with all
the variables. The difficulties encountered in reducing the set of variables to a single factor led us to
explore the possibility of referring to two latent factors (Table 5). The results show that the two factors
better describe the variable set. In fact, the factors explain the variables x1, x3, x4, x6, and x7 and the
variables x2 and x5, respectively, while only x8 is not explained by the model. The variable x2 (with
residual variance close to zero) is the best explained, while, in contrast, x4 and x8 are the worst
explained. Though the two latent factors models’ chi-square statistical results are less than the factor
model’s one, the value and respective p-value value appear statistically acceptable.

In addition, the uniqueness of one latent factor model is over 90% (Table 4) for three variables x2, x5,
x8; in the second model (Table 5) the highest residual variance variable x8 does not exceed 90%.
Therefore, we could conclude that the two-latent-factor model makes the whole variable set clearer. If
we consider that each factor represents only the variables with a factorial weight above 0.4 and we
calculate the Cronbach alpha on these variables to verify if indeed the two factors significantly explain
such variables, we obtain the following: Factor 1 interpolates significantly the variables “Foundation,”
“Membership,” “Authority,” and “Leadership,” resulting in a Cronbach alpha equal to 0.869; Factor 2
interpolates significantly the variables “License” and “Subproject,” resulting in a Cronbach alpha
equal to 0.670. Finally, we conducted a factor analysis with three factors to verify whether we could
reduce our model to West and O’Mahony’s (2008). However, this hypothesis, with a p-value of 0.95
and a chi square of 2.17, is rejected.

Discussion
Our objective in this paper was to verify whether there is a correlation between OS dimensions and, if
there is, which were the main configurations available. Our analysis confirms that those dimensions
are correlated. However, differently from what is commonly suggested, there are four, rather than two,
configurations of governance. Therefore, OS governance is not reducible to a single continuum
between autonomous and sponsored. The factor analysis, in fact, has identified the existence of two
latent factors along which the configurations of governance are defined. The first describes the
leadership and decision-making structure, the second the intellectual property rights regime.

Definition of the Two Dimensions
The first dimension has been defined as the leadership and decision-making structure. The variables
described by this latent factor are foundation, membership, code change, release authority, and
leadership. Foundations have been institutionalized for two reasons. The first is to stimulate firms’
participation. Firms are moved by the opportunity to make profit out of their participation in an OS
community. Therefore, their participation is often constrained to rules that make room for some degree
of proprietary appropriation. However, risks are also associated with stimulating companies’
participation.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

10

Table 2: Descriptive Statistics

Variables Sample Size Mean Median Mode S.D. Min Max

1 Foundation 40 0.55 0 0 0.84 0 2

2 Type of license 40 1.62 1 3 1.17 0 3

3 Membership 40 0.45 0 0 0.71 0 2

4 Code changes 40 1.05 1 1 0.71 0 2

5

6

Subproject

Authority

40

 40

1.42

0.55

2

0

2

0

0.90

0.78

0

0

2

2

7 Leadership 40 1.12 1 1 1.16 0 3

8 Code access 40 0.90 1 1 0.30 0 1

9 Vitality score 40 39099.17 5157.22 - 81209 2 295210

10 Vitality score 2 40 1475919 20516.39 - 7270000 2.46 44300000

11 Major release 40 10.94 9 1 11.59 1 60

 Table 3: Descriptive Statistics and Bivariate Correlations Matrix

Variables 1 2 3 4 5 6 7 8 9 10 11

1 Foundation 1.00

2 Type of license 0.03 1.00

3 Membership 0.68 0.11 1.00

4 Code changes 0.29 0.36 0.51 1.00

5

6

Subproject

Authority

0.19

0.65

0.49

 0.29

0.21

0.69

0.28

0.41

1.00

0.24

 1.00

7 Leadership 0.63 0.15 0.70 0.61 0.19 0.66 1.00

8 Code access 0.22 0.25 0.22 0.26 0.16 0.13 0.18 1.00

9 Vitality score -0.14 0.18 -0.20 0.15 0.20 -0.12 -0.10 0.14 1.00

10 Vitality score 2 0.27 0.20 0.11 -0.01 0.12 0.10 -0.03 0.06 0 57 1.00

11 Major release 0.15 0.30 0.10 0.10 0.23 0.07 -0.07 0.23 0.47 0.73 1.00

Journal of Business Systems, Governance and Ethics Vol 6, No 1

11

Table 4 (left) and Table 5 (right): Factor Analysis Results

For instance, firms may leverage their market power to exploit the value created by the community or
to take control of project management. Therefore, the second reason for institutionalizing a foundation
is to safeguard public accessibility and control of the project management, project development, and
source code. However, institutionalizing a foundation is not sufficient to ensure public accessibility
and control. The rules governing these foundations, such as membership and the right to perform
changes directly in the source code repository, are also relevant.

The second dimension has been defined as the intellectual property right regime. It refers to two
variables. The first has to do with the type of license adopted to distribute the software. The second
has to do with the possibility of setting up sub-projects, and with the ownership of these sub-projects.

The Matrix of OS Governance Form
The combination of these two dimensions defines four models of OS governance (see Figure 1).
Sponsor Based. These are communities sponsored and controlled by a company or a pool of
companies. In these communities, founders/sponsors retain a large part of the control power per se
with little community involvement. The intellectual property right regime is pragmatic. Therefore, it
safeguards the sponsor’s capacity to appropriate value by either selling accessibility to the source code
for commercial purposes or to retain control of parallel or complementary project development.
Furthermore, the opportunity to set up sub-projects is either bound or directly controlled by claiming
property rights on these sub-projects.

An example of a sponsored community is the Sun Java platform SE (see Figure 2). This case has been
studied by Yamauchi et al. (2000). The Java platform is an Internet-based programming environment
originally developed by Sun. Java represented the opportunity for Sun to reposition itself as a leading
player within the wider post-PC, Internet-based information technology (IT) field. However, to
achieve this object, Sun had to cope with Microsoft, which had already announced its intention to
release a comparable platform and could exploit its dominant position to impose its platform as the
standard, and the risk that others could develop their own comparable technology. Sun chose an open
system strategy to try to impose Java as the technological standard in the emerging field of Internet-
based technologies. This strategy consists of making it easier for rivals and vendors of complementary
products to get access to the sponsor’s proprietary technology. For instance, the license scheme
implemented by Sun required paying an up-front fee and royalties on unit sales of Java-based products
but allowed licensees to modify the technology as long as they shared these modifications freely with
Sun and other licensees. This strategy turned out to be successful as long as the technology did not
achieve its stage of maturity. Most of Sun’s partners, in fact, started to feel threatened by Java’s
control of the technology and Sun’s introduction of Java products that competed with those offered by
other members of the Java collective. Sun’s decision to progressively open the source part of Java

Journal of Business Systems, Governance and Ethics Vol 6, No 1

12

technology reflects an attempt to manage the trade-off between the risk of losing the support of a large
part of the community and securing control of the core technology to prevent fragmentation, forking,
and indeed Sun’s centrality in the Internet-based IT field.

Figure 1: OS Governance Matrix Model

Therefore, Sun’s sponsor-based open source strategy reflects the trade-off between the need to build
up credibility as an institutional third party and the need to defend its position as a commercial party.
To achieve this objective, Sun leveraged the appropriability regime, by allowing, for instance, the Java
collective to establish working groups to extend Java into new areas and determine when these new
specifications would be released to the public, to enhance credibility, and in community management
to control the direction of development.

Open Source Based. These communities have developed a pragmatic attitude toward the contribution
given by enterprises to OS development. Actually, these communities recognize the potential for
diffusion and activation of an extended feedback network. At the same time, they are aware of the
possible risks that may result from opening too much to enterprises. The communities handle this
trade-off by ensuring companies have the opportunity to pursue autonomous development strategies
and by ensuring public access to source code and decision making. An example of an open-source-
based community is Mozilla. This case has been studied by Mockus et al. (2002). Mozilla was started
in 1998 as a sponsor-based community by Netscape that, in the face of stiff competition, announced
that the Communicator product and source code would be available free of charge. The group
mozilla.org was meant to act as a benevolent dictator for the open source effort. Members of the group
were mainly employees of Netscape Inc. entrusted with the mission to develop Mozilla for testing
purposes and not for use by end users. This led to a fork meant to provide the documentation and
support necessary for an end-user project. In 2003, when AOL (Netscape’s parent) started to disinvest
from Mozilla, a non-profit foundation was founded. AOL donated the property rights, the
technological development infrastructure, and a grant of US$2 million to the foundation to support its
startup. Now, the members of the board are not elected but appointed. The source code is licensed out
in MPL (Mozilla Public License). That is an open/free license. The project is coordinated by two
wholly owned subsidiaries. Development coordination and control are delegated to a number of roles,
such as module owners, peers, and super reviewers. Persons are appointed to those roles. However, the
experience and competencies required for being appointed to those roles are codified. Furthermore,
those roles’ decision-making rights and responsibilities are also identified. Finally, users are also
allowed to set up their own sub-project. Leadership and decision making in the Mozilla community

Le
ad

er
sh

ip
 a

nd
 D

ec
is

io
n

M
ak

in
g

Tolerant

Dictator Based

Sponsor

Based

Reciprocity

Based

Open Source

Based

High Low

Concentred

Distributed

 Reciprocity of the Appropriability Regime

Journal of Business Systems, Governance and Ethics Vol 6, No 1

13

are not as open as in the Apache one. The board of directors and the main organizational roles are not
elected but appointed. However, those roles have been defined in terms of the decision-making
experience required to be appointed to the role.

Reciprocity Based. These communities are linked to the traditional model of free development. They
have a radical attitude toward IPR, which discourages firms’ participation. They have a radical attitude
also toward the institutionalization of foundations, membership, and decision-making, which are
viewed as constraints to self-organization and emerging cooperation. Decision-making power is de
facto shared between contributors who are commonly recognized as leaders within the community. An
example of a reciprocity-based community is the GNU GCC. This project has its origin in the C
compiler Stallman created to make free Unix. Now, the project maintains various compilers and
libraries. GCC, according to Yamauchi et al. (2000), has experienced two discontinuities. The first
was architectural. The second was tied to the governance of the community. The main enabler for this
second change was the impossibility of incorporating the work of many programmers in the main
trunk of the code because of the orientation of the project to stability. Therefore, according to our
perspective, there is a risk of loss of attractiveness in terms of the quality and quantity of people
attracted. Therefore, according to what Lee and Cole also suggested, an experimental development
project was established (EGCS – Experimental GNU Compiler System) and appointed as the official
maintainer of the GNU compiler, which was also renamed GCC. The decision-making structure was
also revised in order to enlarge participation. A steering committee of 13 members, each representing
a certain community of users (e.g., Fortran), has been set up. In addition, 134 programmers and 35
testers joined the development team.

Tolerant Dictator Based. This model differs from the previous ones only because of the concentration
of decision-making power in the hands of a single tolerant dictator, as Linus Torvald used to be in the
early stages of Linux development. The power of the dictator is de facto counterbalanced by his or her
weak control of the source code. Therefore, dictators are always required to renegotiate their technical
leadership within the community in order to canalize resources efforts and prevent versioning and
forking.

Figure 2: OS Governance Matrix

Journal of Business Systems, Governance and Ethics Vol 6, No 1

14

Do those dimensions have an impact on community performances? An exploratory test was conducted
on the vitality score. One of the reviewers suggested that typologies and classification are important
only as stepping stones to develop meaningful theoretical statements on the relationship between the
dimension identified and some variable of interest. Even if we recognize completely the merit of this
argument, answering this question would basically require writing another paper. That is why we
originally addressed this issue as part of future research directions. However, in an attempt to give
even a partial response to this suggestion, we tried, with the available data, to test whether there were
differences between the configurations identified and the variable of interest. The variable that we
chose is the vitality score. This is the score Freshmeat uses to measure projects’ vitality. The vitality of
a project is calculated as:

releaselast
agereleasesoreVitalitySc *

.

This way, projects with lots of announcements that have been around for a long time and have recently
come out with a new release earn a high vitality score, and old projects that have been announced only
once get a low vitality score. To test whether a configuration scores better in terms of vitality, we used
one-way ANOVA. This is a general linear model (GLM) used to test for differences among two or
more independent groups (in our case, configuration groups). This analysis shows that the four groups
score significantly differently in terms of vitality (see Table 6). The ones that scored best are
sponsored and tolerant dictatorship communities. Therefore, this result seems to suggest that
communities with a more centralized model of leadership and decision making are more vital than the
ones with a more distributed model of leadership.

Table 6: ANOVA of Groups with Respect to the Vitality Score

 Df Sum Sq Mean Sq F value Pr(>F)

Factor(x) 3 0.20373 0.067910 3.3324 0.02384 *

Residuals 36 1.54876 0.020378

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Figure 3: Boxplot with Respect to the Vitality Score

We found this result counterintuitive. The reason is that we expected open leadership and decision
making to be positively associated with a better capacity to attract skilled and strongly self-motivated
developers and users. Those latter aspects are usually positively associated with higher creativity and
indeed innovativeness of the process of development. This data, conversely, seems to suggest that a
more centralized model of leadership and decision making is positively associated with a more

Journal of Business Systems, Governance and Ethics Vol 6, No 1

15

coordinated process of development and indeed a faster process of development. The main problem is
that the vitality score is not a measure of communities’ creativity. The vitality score, in fact, does not
take into account the innovative content of a release. Therefore, in order to consider this aspect, we
recalculated the vitality score of these projects for major releases (see Table 7). These data were
collected from SourceForge.net. The basic idea behind this attempt is that the label major should be a
better proxy of the development discontinuity contained in those releases. The ANOVA conducted on
this index shows that reciprocity-based and tolerant dictatorship communities score significantly better
than sponsored and open source communities. Therefore, in the case of a major release, the
appropriability regime seems to be the discriminating variable. Therefore, if confirmed, this result
seems to confirm Shah’s findings that talented and self-motivated people prefer to work on projects
where the source code is freely available.

Table 7: ANOVA of Groups with Respect to the Vitality Score 2

 Df Sum Sq Mean Sq F value Pr(>F)

Factor(x) 3 0.21352 0.113512 35.221 0.02175*

Residuals 33 134.222 0.018273

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Figure 4: Boxplot with Respect to the Vitality Score 2

This is only a preliminary analysis. To develop a credible thesis about the relationship existing among
governance, creativity, and innovation, a deeper understanding of these variables and their connections
is required. The state of maturity of a project, for instance, will have great influence on the frequency
of releases and the innovative content of those releases. However, these results provide some initial
ground for claiming that those configurations might be relevant for understanding the existence of
differences in productivity, creativity, and innovation in OS communities.

Conclusion
Our main contribution in this paper has been to show that the configuration of OS governance can be
reduced to two main factors. The first is the structure of the leadership and of the decision-making
process. The second is the appropriability regime. The intersection of these two dimensions defines
four configurations of OS governance: open source, sponsor, reciprocity, and tolerant dictatorship
based. Open source and sponsored-based differ mainly in their degree of accessibility to leadership
and decision making. In an open source community, leadership and decision making are a highly
distributed process. In a sponsored community, on the contrary, sponsors retain control. Both
communities are characterized by a permissive regime of appropriability, even if a sponsored
community attempts to maintain control over sub-project content and development. Reciprocity and

Journal of Business Systems, Governance and Ethics Vol 6, No 1

16

tolerant dictatorship communities, in contrast, are characterized by a radical regime of appropriation.
Therefore, these communities are grounded on the principle of reciprocity in the access to and usage
of the source code. Reciprocity and tolerant dictatorship differ in the distribution of power in the
community. In a reciprocity-based community, community leadership and decision making are highly
distributed, whereas in a tolerant dictatorship community, they are concentrated in the hands of the
copyright holder.

The results of our work have some interesting implications. First, the work provides a set of strategic
insights into the key dimensions that have to be considered to evaluate the returns of an OS investment
compared to an IPR investment. Second, our work provides an empirically grounded model to support
firms’ decision makers either in configuring an OS model of governance or in evaluating the
opportunity to enter a communitarian-based OS community. The same results can be used by
community leaders to evaluate the quality of governance safeguards in place and the potential
activated by entering a specific company.

Three major directions can be pursued to extend the implications of this work. The first is to extend
the experiment to a larger sample. Therefore, the results may change when a larger number of cases
are considered. Furthermore, we identified other dimensions that could be interesting to explore in
order to identify other factors that influence OS governance. For instance, in this paper the origin of
the project has been defined as either sponsored or communitarian. However, projects have been
started either as university spin-offs or company spin-offs. Furthermore, the institutionalization of a
foundation is not the only institutional arrangement that autonomous communities have used to
safeguard openness. Communities have set up associations or firms that have community members
elected to the board to represent the community or that are constrained to reinvest profits in
community development. Therefore, there might be a correlation between these dimensions and the
solution to implemented governance.

A second development direction is to study the relationship between OS governance configurations
and creativity. In this paper, we made a very preliminary attempt to verify whether those
configurations could be relevant in explaining differences in creativity between communities. The
results are encouraging. However, much more work is required to arrive at a theory linking
governance to creativity. Our hypothesis so far is that governance is expected to influence the quantity
and quality of the people attracted, and the quality of the cooperation. Talent and entrepreneurs,
according to our perspective, are attracted by the context of governance that entrusts users with the
power of self-determination and the capacity to influence decision making. The quality of the
cooperation depends on the distribution of incentives between individuals and firms over time.
Therefore, we expect to find a strong correlation between an open governance configuration and
creativity.

Finally, a third direction is to explore the relationship between governance and the community
climate. We argue that governance influences collaboration sustainability and membership
satisfaction. The community climate is expected to improve as a consequence of the decision-making
involvement and equity between the efforts produced and the opportunities available. Therefore, a
governance configuration that privileges the interests of firms at the expense of that of individuals
should produce dissatisfaction and fewer individuals’ participation.

References
Baldwin, C.Y. & Clark, K.B., 2003. The Architecture of Cooperation: How Code Architecture

Mitigates Free Riding in the Open Source Development Model. Harvard Business School, 43.
Bonaccorsi, A. & Rossi, C., 2003. Why Open Source software can succeed. Research Policy, 32(7),

1243-1258.
Crowston, K., 1997. A Coordination Theory Approach to Organizational Process Design.

Organization Science, 2, 157 - 175.
Dahlander, L. & Magnusson, M.G., 2005. Relationships between open source software companies and

communities: Observations from Nordic firms. Research Policy, 34(4), 481-493.
Demil, B. & Lecocq, X., 2006. Neither market nor hierarchy nor network: The emergence of bazaar

governance. Organization studies, 27(10), 1447.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

17

Feller, J. & Fitzgerald, B., 2002. Understanding open source software development, Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA.

Florida, R.L., 2002. The Rise of the Creative Class: And How It’s Transforming Work, Leisure,
Community and Everyday Life, New York: Basic Books.

Franck, E. & Jungwirth, C., 2003. Reconciling investors and donators-The governance structure of
open source. Journal of Management and Governance, 7, 401-421.

von Hippel, E. & von Krogh, G., 2003. Open Source Software and the” Private-Collective” Innovation
Model: Issues for Organization Science. Organization Science, 14(2), 208-223.

Kogut, B. & Metiu, A., 2001. Open-source software development and distributed innovation. Oxford
Review of Economic Policy, 17(2), 248.

de Laat, P.B., 2007. Governance of open source software: state of the art. Journal of Management and
Governance, 11(2), 165–177.

Lakhani, K.R. & von Hippel, E., 2003. How open source software works:?free? user-to-user
assistance. Research Policy, 32(6), 923-943.

Lee & Cole, 2003. From a firm-based to a community-based model of knowledge creation: The case
of the Linux kernel development. Organization Science, 633–649.

Lerner, J. & Tirole, J., 2000. The Simple Economics of Open Source. NBER Working Paper.
Markus, M.L., 2007. The governance of free/open source software projects: monolithic,

multidimensional, or configurational? Journal of Management and Governance, 11(2), 151-163.
Mockus, A., Fielding, R.T. & Herbsleb, J.D., 2002. Two case studies of open source software development:

Apache and Mozilla. ACM Transactions on Software Engineering and Methodology (TOSEM), 11(3), 346.
O’Mahony, S., 2003. Guarding the commons: how community managed software projects protect

their work. Research Policy, 32(7), 1179-1198.
O’Mahony, S., 2007. The governance of open source initiatives: what does it mean to be community

managed? Journal of Management and Governance, 11(2), 139-150.
O’Mahony, S. & West, J., 2005. What Makes a Project Open Source? Migrating from Organic to

Synthetic Communities. Academy of Management Annual Meeting. Honolulu.
O’Mahony, S., 2003. Guarding the commons: how community managed software projects protect

their work* 1. Research Policy, 32(7), 1179–1198.
O’Mahony, S. & Ferraro, F., 2007. The emergence of governance in an open source community. The

Academy of Management Journal (AMJ), 50(5), 1079-1106.
Osterloh, M. & Rota, S., 2007. Open source software development?Just another case of collective

invention? Research Policy, 36(2), 157-171.
Raymond, E.S., 1999. The Cathedral and the Bazar, O’Reilly & Associates, Sebastopol.
Rossi, C. & Bonaccorsi, A., 2005. Intrinsic vs. extrinsic incentives in profit–oriented firms supplying

open source products and services. First Monday, 10(5).
Scacchi, W., 2004. Free and open source development practices in the game community. Software,

IEEE, 21(1), 59-66.
Shah, S.K., 2006a. Motivation, governance, and the viability of hybrid forms in open source software

development. Management Science, 52(7), 1000.
Shah, S.K., 2006b. Motivation, Governance, and the Viability of Hybrid Forms in Open Source

Software Development. Management Science, 52(7), 1000-1014.
West, J., 2003. How open is open enough? Melding proprietary and open source platform strategies.

Research Policy, 32(7), 1259-1285.
West, J. & Gallagher, S., 2006. Patterns of Open Innovation in Open Source Software. HW

Chesbrough & W. Vanhaverbeke & J. West (Eds.), Open Innovation: Researching a New
Paradigm, 82-106.

West, J. & O’Mahony, S., 2008. The Role of Participation Architecture in Growing Sponsored Open
Source Communities. Industry & Innovation, 15(2), 145-168.

Williamson, O.E., 1999, Strategy research: governance and competence perspectives. Strategic
Management Review, 20(12), 1087-1108.

Yamauchi, Y. et al., 2000. Collaboration with Lean Media: how open-source software succeeds. In
Proceedings of the 2000 ACM conference on Computer supported cooperative work.

Journal of Business Systems, Governance and Ethics Vol 6, No 1

18

